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Abstract

Background: TheUSHistorical ClimatologyNetwork (USHCN) provides temperature data critical
to climate change assessments. NOAA applies multiple adjustments to raw stationmeasurements, in-
cluding time-of-observation corrections and pairwise homogenisation algorithms, intended to remove
non-climatic biases such as station moves, instrument changes, and urban heat island effects. The ef-
fectiveness of these adjustments in removing urbanwarming signals while preserving genuine climate
trends remains a fundamental question for temperature record integrity.

Objective: To investigate whether NOAA temperature adjustments remove urban heat island con-
tamination by comparing urban heat island intensity (UHII) across raw, time-of-observation adjusted,
and fully adjusted USHCN datasets.

Methods: We analyzed 126 years of minimum temperature data (1895–1924 vs. 1991–2020) from
stations classified using a four-level urban hierarchy based on proximity to population centers. UHII
was calculated as the difference between mean urban and rural temperature anomalies.

Results: All datasets showed statistically significant urban heat island effects (p < 0.05). Raw data
showed differential UHII of 0.662°C, time-of-observation adjusted data showed 0.522°C (−21.1%),
and fully adjusted data showed 0.725°C (+9.4% from baseline). Additionally, urban stations exhibited
a persistent baseline temperature elevation of 2.98°C for minimum temperatures throughout the 130-
year record. Combined with the differential warming trend, this indicates that 22.7% of USHCN
stations experience total urban heat island contamination approaching 3.7°C.

Conclusions: NOAA adjustments do not systematically remove urban heat island signals. The final
adjusted dataset enhances rather than reduces UHII by 9.4% compared to raw measurements. Urban
heat island contamination (0.725°C) remains embedded in 22.7% of USHCN stations throughout the
adjustment process, with implications for global temperature trend calculations.

Keywords: urban heat island, temperature adjustments, USHCN, climate data quality, homogeniza-
tion

1 Introduction

The evidence supporting anthropogenic climate change rests fundamentally on the accuracy and reliabil-
ity of long-term temperature measurements (Hansen et al., 2010). These instrumental records, spanning
more than a century, provide the empirical foundation for detecting and attributing observed warming
trends to human activities. The integrity of these temperature datasets is therefore paramount to our
understanding of climate change and its magnitude.

The United States Historical Climatology Network (USHCN) represents one of the world’s most
comprehensive and longest-running surface temperature monitoring systems. Established in the 1980s
(Karl et al., 1990; Quinlan et al., 1987), the USHCN comprises approximately 1,218 stations selected for
their long periods of record and high-quality metadata (Menne et al., 2009). These stations contribute
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significantly to both national climate assessments and global temperature reconstructions, with USHCN
data incorporated into major international datasets including the Global Historical Climatology Network
(GHCN) (Lawrimore et al., 2011) and NASA’s GISTEMP analysis (Hansen et al., 2001).

Raw temperaturemeasurements, however, contain various non-climatic influences that can bias trend
calculations. These include station relocations, changes in instrumentation, alterations in observation
times, and modifications to the local environment surrounding weather stations (Menne et al., 2010; Pe-
terson, 2006). To address these issues, the National Oceanic and Atmospheric Administration (NOAA)
applies a series of quality control procedures and statistical adjustments to the raw USHCN data. These
adjustments include time-of-observation bias corrections (Karl et al., 1986; Vose et al., 2003), instrumen-
tation adjustments, and a pairwise homogenization algorithm designed to identify and correct disconti-
nuities in station records (Menne &Williams Jr, 2009).

NOAAmaintains that these adjustment procedures successfully remove non-climatic artefacts while
preserving the underlying climate signal (Menne et al., 2009; Williams Jr et al., 2012). If this assertion is
correct, adjusted temperature trends should be consistent across stations regardless of their environmen-
tal setting. Specifically, rural and urban stations should exhibit comparable temperature changes after
adjustments are applied, as any urban heat island influence would theoretically be identified and removed
during the homogenization process (Hausfather et al., 2013; Menne &Williams Jr, 2009).

The urban heat island (UHI) effect presents a particular challenge for climate monitoring. Urbanisa-
tion creates local warming throughmultiplemechanisms including reduced evapotranspiration, increased
heat absorption by built surfaces, and anthropogenic heat release (Landsberg, 1981; Oke, 1973, 1987).
This localised warming can introduce a spurious warming trend in temperature records that is unrelated
to large-scale climate change. Given that many long-term weather stations are located in or near pop-
ulation centres that have experienced substantial growth over the past century, the potential for UHI
contamination of climate records remains a significant concern (Karl et al., 1988).

DespiteNOAA’s quality control efforts, the effectiveness of current adjustment procedures in remov-
ing urban heat island influences remains an open question requiring empirical verification. While some
studies have supported the efficacy of these adjustments (Hausfather et al., 2016; Venema et al., 2012),
others have raised concerns about their ability to fully remove UHI biases (Connolly et al., 2022; Fall
et al., 2011; Spencer, 2021). This study addresses this critical gap by systematically evaluating whether
NOAA’s adjustments successfully eliminate UHI effects from the USHCN temperature record.

We analyse 126 years of minimum temperature data from 1,218 USHCN stations, comparing temper-
ature trends between urban and rural stations in both raw and adjusted datasets. Our analysis tests the
fundamental assumption that adjustment procedures produce homogeneous temperature trends indepen-
dent of station environment, with important implications for the accuracy of observed warming trends
and our understanding of anthropogenic climate change.

2 Methodology

We employed a comparative analysis framework to investigate whether NOAA temperature adjustments
systematically affect urban heat island detection in the US Historical Climatology Network (USHCN).
Our “steel-man” approach maximised potential for detecting adjustment bias by using parameters most
favourable to urban heat island signal detection: the longest available data period (1895-2020), minimum
temperatures that exhibit the strongest urban heating signatures, and conservative urban classification cri-
teria focused onmajormetropolitan areas. We compared urban heat island intensity across threeUSHCN
datasets—rawmeasurements, time-of-observation adjusted, and fully adjusted—using identical process-
ing procedures for anomaly calculation, urban classification, and statistical testing. This design isolates
the specific effects of NOAA adjustment procedures on urban heat island detectability while addressing
concerns that homogenisation might inadvertently remove legitimate urban climate signals.
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2.1 Computational Framework

A comprehensive Python application was developed specifically for this investigation to facilitate system-
atic analysis and visualisation of urban heat island effects across multiple USHCN datasets (Lyon, 2025).
The application, built using pandas and geopandas for data manipulation, matplotlib for visualisation,
and scipy for statistical analysis, implements modular algorithms for temperature anomaly calculation,
urban context classification, and heat island intensity computation. The software architecture employs
a command-line interface that enables reproducible analysis workflows with configurable parameters for
temporal periods, temperature metrics, urban classification thresholds, and data adjustment types. Au-
tomated plotting functions generate publication-quality visualisations including heat island maps with
urban context overlays, statistical comparison charts, and geographic visualisations of station classifica-
tions. All analysis code, intermediate results, and final outputs are preserved in a structured documen-
tation framework to ensure complete reproducibility and transparency of the investigation methodology.
The application’s modular design allows for systematic comparison across the three USHCN datasets
(raw, time-of-observation adjusted, and fully adjusted) whilemaintaining identical processing procedures,
thereby isolating the effects of specific adjustment procedures on urban heat island detection capabilities.

2.2 Temperature Anomaly Calculation

Temperature anomalies were calculated using a simple difference method between two 30-year climato-
logical periods. For each weather station, monthly minimum temperature observations were aggregated
to compute mean temperatures for both a baseline period (1895-1924) and a current period (1991-2020).
The temperature anomaly for each station was calculated as:

Anomaly = T current − T baseline (1)

where both period means represent the average of all available monthly minimum temperature ob-
servations within the respective 30-year windows. This 126-year analysis span maximises the temporal
leverage for detecting long-term changes while using the earliest reliable USHCN data as the baseline
reference.

Minimum temperatures were selected as the primary metric because they exhibit the strongest urban
heat island signatures, particularly during nighttime hours when urban thermal mass effects are most
pronounced and rural areas experience greater radiative cooling.

2.3 Dataset Comparison Framework

Three versions of the USHCN temperature dataset were analysed to assess adjustment impacts:

1. Raw data: Completely unadjusted station measurements as originally recorded

2. Time-of-observation adjusted (TOBs): Rawdata corrected only for systematic biases introduced
by changes in observation timing

3. Fully adjusted (FLS52): Complete NOAA adjustment suite including TOBs corrections, ho-
mogenisation procedures, and other quality control modifications

Each dataset underwent identical anomaly calculation and urban classification procedures to enable
direct comparison of urban heat island intensity across adjustment levels.

2.4 Urban Context Classification Algorithm

Weather stations were classified using a four-level urban hierarchy based on proximity to population cen-
ters and city size thresholds. The classification algorithm employed the following decision criteria applied
in hierarchical order:
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1. Urban Core: Stations located<25 km from cities with≥250,000 population

2. Urban Fringe: Stations 25–50 km from cities with≥100,000 population

3. Suburban: Stations 50–100 km from cities with≥50,000 population

4. Rural: Stations>100 km from any city with≥50,000 population

Distance calculations were computed from station coordinates to the nearest qualifying population
centre. The urban context database comprised 743 US cities with populations ≥50,000, derived from
authoritative Census Bureau sources and quality-controlled for coordinate accuracy and completeness.

TheUnited States Historical Climatology Network comprises 1,218 temperature monitoring stations
distributed across all states, providing comprehensive geographic coverage for climate assessment. The
network exhibits a distinct spatial pattern, with higher station density in eastern states and relatively
sparse coverage in western mountain and desert regions. This distribution reflects both historical set-
tlement patterns and the practical challenges of maintaining observation stations in remote terrain.

2.5 Urban Heat Island Intensity Computation

UrbanHeat Island Intensity (UHII)was calculated as themean difference between urban and rural station
anomalies:

UHII = Anomalyurban − Anomalyrural (2)

For this analysis, urban categories (urban core and urban fringe) were combined into a single urban
group to ensure adequate sample sizes for statistical testing. Statistical significance was assessed using
both parametric (independent samples t-test) and non-parametric (Mann-Whitney U test) approaches
with significance defined as p < 0.05. Effect sizes were quantified using Cohen’s d statistic, and 95%
confidence intervals were calculated for all UHII estimates using standard error propagation methods.

In addition to calculating differential warming trends through anomaly analysis, we computed ab-
solute temperature differences between urban and rural stations to quantify the baseline magnitude of
urban heat island effects. This dual approach allows us to distinguish between the persistent UHI effect
(cross-sectional temperature difference) and the changing UHI effect over time (longitudinal warming
differential).

2.6 Quality Control and Station Selection

Several quality control measures were implemented to ensure data representativeness:

1. Temporal completeness: Only stations with sufficient data in both baseline and current periods
were included in anomaly calculations

2. Geographic validation: Station coordinates were validated against known locations and outliers
removed

3. Urban classification consistency: Classification criteria were applied uniformly across all three
datasets to maintain comparability

4. Conservative urban definitions: Population and distance thresholds were set conservatively to
minimise misclassification of stations and reduce potential bias in urban/rural categorisation

Stations with incomplete temporal coverage or questionable coordinate data were excluded from anal-
ysis. The final dataset comprised 1,194–1,218 stations depending on data availability in each adjustment
version, with the fully adjusted dataset providing the most complete coverage due to gap-filling proce-
dures in the NOAA adjustment process.



3 Results 5

2.7 Comparative Statistical Analysis

The three-dataset comparison employed identical analytical frameworks to isolate the effects of specific
adjustment procedures. Key metrics compared across datasets included:

• Urban heat island intensity magnitude and statistical significance

• Station count and geographic distribution by urban classification

• Temperature anomaly distributions and summary statistics

• Effect sizes and confidence intervals for urban vs rural differences

Changes in UHII between datasets were quantified both in absolute terms (°C) and as percentage
changes from the raw data baseline to assess the practical significance of adjustment impacts on urban
heat island detection.

3 Results

3.1 Dataset Characteristics

Analysis of the USHCN temperature records yielded 1,194 stations with sufficient data coverage in both
the raw and time-of-observation adjusted datasets, increasing to 1,218 stations in the fully adjusted dataset
due to gap-filling procedures in the NOAA adjustment process. This analysis period beginning in 1895
was selected based on a comprehensive network quality assessment that revealed severe coverage inad-
equacies in earlier periods. Prior to 1890, the USHCN network averaged only 64 stations nationwide,
with as few as 17 stations in the 1860s—grossly inadequate for continental climate analysis. A dramatic
expansion occurred between 1890 and 1908, with station count increasing from 237 to 1,218 (a fivefold
increase), potentially introducing sampling artefacts into calculated temperature trends. The network
achieved adequate continental coverage only around 1900 and stabilised at 1,218 stations by 1908.

The geographic distribution of themodern network demonstrates comprehensive coverage across the
continental United States, with higher station density in eastern states and sparser coverage in western
mountain and desert regions (Figure 1). Urban classification revealed that the majority of stations (77.3–
77.4%) were located in rural areas more than 100 km from cities with populations exceeding 50,000, while
2.1% of stations were classified as urban core (within 25 km of cities with populations ≥250,000), and
15.2–15.3% occupied suburban locations (Table 1). By constraining our analysis to the post-1895 period,
we ensure adequate spatial sampling throughout, eliminating potential artefacts from network expansion
while maintaining a 130-year analysis period sufficient for robust climate trend detection.

Table 1: Distribution of USHCN stations by urban classification across three adjustment levels

Dataset Total
Station Count (%)

Cities≥250k
Urban Core Urban Fringe Suburban Rural

Raw 1,194 25 (2.1) 64 (5.4) 181 (15.2) 924 (77.4) 77
TOBs Adjusted 1,194 25 (2.1) 64 (5.4) 181 (15.2) 924 (77.4) 77
Fully Adjusted 1,218 26 (2.1) 65 (5.3) 186 (15.3) 941 (77.3) 77

3.2 Urban Heat Island Intensity Across Adjustment Levels

The urban heat island intensity, calculated as the difference between mean urban and rural temperature
anomalies, displayed a pronounced and unexpected pattern across the three levels of data adjustment
(Table 2). Raw temperature data revealed a statistically significant UHII of 0.662°C (p = 0.004, Cohen’s
d = 0.58), confirming the presence of substantial urban warming effects in unadjusted measurements.
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Figure 1: Location and classification of temperature stations and major cities used in the study.

The application of time-of-observation adjustments resulted in a marked reduction of UHII to 0.522°C,
representing a 21.1% decrease from the raw data baseline while maintaining statistical significance (p =
0.022, Cohen’s d = 0.46).

Table 2: Urban heat island intensity (UHII) and statistical measures across USHCN adjustment levels

Dataset UHII (°C) Change from Raw p-value Cohen’s d 95% CI
Raw 0.662 — 0.004 0.58 [0.21, 1.11]
TOBs Adjusted 0.522 −21.1% 0.022 0.46 [0.08, 0.97]
Fully Adjusted 0.725 +9.4% <0.001 0.97 [0.58, 0.87]

Most remarkably, however, the fully adjusted dataset exhibited the highest UHII of 0.725°C, repre-
senting a 9.4% increase from the raw data baseline and a 38.8% increase from the TOBs-adjusted values.
This enhancement was accompanied by substantially improved statistical significance (p = 1.25×10−6)
and a large effect size (Cohen’s d = 0.97), indicating that the complete NOAA adjustment procedures
not only preserve but amplify the urban heat island signal in the temperature record.

3.3 Absolute Urban Heat Island Magnitude

Beyond the differential warming trends analyzed above, examination of the absolute temperature differ-
ences between urban and rural stations reveals the full magnitude of urban heat island contamination
in the USHCN network. Analysis of the entire 1895–2025 period shows that urban stations consistently
record temperatures 2.98°Cwarmer than rural stations forminimum (nighttime) temperatures, with sum-
mer maximum temperatures showing a smaller but still substantial difference of 0.59°C (Table 3).

This persistent 3°C nighttime temperature difference represents the baseline urban heat island effect
that has existed throughout the instrumental record. The fivefold difference between nighttime and day-
time UHI magnitudes aligns with established understanding of urban thermal dynamics, where reduced
nocturnal cooling due to thermal mass effects, reduced sky view factors, and anthropogenic heat sources
create the strongest temperature contrasts (Oke, 1987). Critically, this baseline UHI effect exists in ad-
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Table 3: Absolute urban heat island magnitude in USHCN network (1895–2025)

Temperature Metric Urban Mean (°C) Rural Mean (°C) UHI Magnitude (°C)
Minimum (year-round) 6.75 3.78 2.98
Maximum (summer) 29.30 28.71 0.59

dition to the differential warming trends identified in our primary analysis, indicating that urban stations
not only warm faster than rural stations but do so from an already-elevated temperature baseline.

3.4 Geographic Distribution of Urban Heat Island Effects

The spatial distribution of urban heat island effects remained consistent across all three adjustment levels,
with 146 stations classified as urban core distributed near 77 major metropolitan areas with populations
exceeding 250,000. Urban warming signals were detected across all geographic regions of the continental
United States, with no evidence of systematic regional bias in the magnitude or direction of adjustments.
Themaintenance of consistent urban-rural temperature differences across diverse climate zones supports
the robustness of the identified urban heat island contamination affecting 22.7% of the USHCN network.

Temperature anomaly analysis revealed that urban stations consistently recorded warmer anoma-
lies relative to the 1895–1924 baseline period compared to their rural counterparts. Urban core stations
showed mean anomalies of 1.35°C (raw), 1.49°C (TOBs adjusted), and 1.70°C (fully adjusted), while ru-
ral stations averaged 0.69°C, 0.97°C, and 0.98°C respectively. This divergence between urban and rural
warming rates persisted across all adjustment levels, with the fully adjusted data showing the greatest
urban-rural temperature differential.

3.5 Statistical Analysis of Adjustment Impacts

Detailed examination of adjustment magnitudes revealed complex patterns in how NOAA procedures
affect stations of different urban classifications. Time-of-observation adjustments produced relatively
uniform warming across all station categories, with rural stations experiencing a mean adjustment of
+0.28°C compared to +0.14°C for urban core stations. This differential TOBs adjustment partially ex-
plains the reduction in UHII observed in the TOBs-adjusted dataset.

Subsequent homogenisation and quality control procedures reversed this pattern, applying larger pos-
itive adjustments to urban stations. The transition from TOBs-adjusted to fully adjusted data showed ur-
ban core stations receiving an additional+0.21°C adjustment compared to only+0.01°C for rural stations.
This preferential warming of urban stations during homogenisationmore than compensated for the initial
TOBs-related reduction, resulting in the net enhancement of UHII in the fully adjusted dataset. Statis-
tical uncertainty, quantified through 95% confidence intervals, decreased with each level of adjustment,
indicating improved data quality and consistency despite the unexpected enhancement of urban warming
signals.

3.6 Temporal Stability of Results

The identified urban heat island effects demonstrated temporal stability across the 126-year analysis pe-
riod. Station availability remained largely consistent between raw and TOBs-adjusted datasets (1,194
stations), with a modest increase to 1,218 stations in the fully adjusted dataset attributable to NOAA’s
gap-filling procedures. The additional 24 stations in the fully adjusted dataset were distributed propor-
tionally across urban classifications, maintaining the overall urban-rural station ratio and ensuring that
the enhanced UHII was not an artefact of changing station composition.
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3.7 The Adjustment Paradox

The progression of urban heat island intensity through the adjustment process revealed an unexpectedU-
shaped pattern that challenges conventional assumptions about temperature homogenisation procedures.
The initial application of time-of-observation corrections systematically reduced the urban warming sig-
nal by 0.140°C (21.1%), suggesting that TOBs adjustments preferentially warm rural stations relative to
urban locations. However, subsequent homogenisation procedures reversed and exceeded this reduction,
adding 0.202°C to the urban heat island intensity for a net enhancement of 0.062°C (9.4%) relative to raw
measurements.

This paradoxical enhancement of urban heat island signals through adjustment procedures was con-
sistent across multiple statistical measures. Effect sizes increased monotonically from 0.58 (raw) to 0.97
(fully adjusted), while statistical significance improved by three orders of magnitude. The pattern per-
sisted when analysis was restricted to stations with continuous records across all three datasets, confirm-
ing that the enhancement was not attributable to station selection effects or data availability biases.

4 Discussion

4.1 Summary of Key Findings

This investigation reveals a remarkable and unexpected finding: NOAA’s temperature adjustment pro-
cedures enhance rather than reduce urban heat island signals in the USHCN dataset. The fully adjusted
data shows an urban heat island intensity of 0.725◦C, representing a 9.4% increase from the raw data
value of 0.662◦C. This enhancement is statistically robust (p < 0.001, Cohen’s d = 0.97) and indicates
that 22.7% of USHCN stations—those within the influence of urban heat sources—contribute a system-
atic warm bias averaging 0.725◦C to the adjusted temperature record. This finding directly contradicts
the widespread assumption that temperature homogenisation procedures remove urban warming biases
(Hausfather et al., 2013; Peterson, 2006).

4.2 Methodological Rigour and Conservative Approach

This study employed a deliberately conservative methodology designed to withstand rigorous scrutiny.
We adopted a “steel-man” approach, selecting parameters that would maximise the detection of urban
heat island effects, thereby providing the strongest possible test of whether adjustments mask legitimate
urban warming signals. The analysis spanned 126 years (1895–2020), utilising the longest available high-
quality data period to ensure robust signal detection. We focused on minimum temperatures, which ex-
hibit the strongest physical basis for urban heat island effects due to reduced nocturnal cooling in urban
environments (Oke, 1987).

Our urban classification system applied stringent criteria that likely underestimate the true extent of
urban influence. Stations were classified as urban core only if located within 25 km of cities with popula-
tions exceeding 250,000—a threshold that excludes many substantial urban areas. For context, cities of
100,000–250,000 population, which can generate significant heat island effects (Oke, 1973), were classi-
fied as urban fringe rather than urban core. This conservative approach strengthens our findings, as any
detected urban heat island contamination represents a lower bound of the actual effect.

The analysis employedmultiple validation approaches including both parametric and non-parametric
statistical tests, effect size calculations, and sensitivity analyses. All data processing steps were docu-
mented and made reproducible, with results preserved at each stage of analysis. This transparency en-
sures that our findings can be independently verified and critically evaluated by other researchers.

4.3 Addressing Potential Criticisms

Several methodological decisions warrant explicit justification to address potential criticisms. The use
of 1,194–1,218 stations represents nearly the entire USHCN network with sufficient data quality, elimi-
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nating concerns about cherry-picking stations. While some may argue that focusing solely on USHCN
data limits generalisability, this network’s high quality and extensive documentation make it ideal for de-
tecting adjustment impacts. The USHCN’s role as a primary contributor to global temperature datasets
(Lawrimore et al., 2011) means that biases identified here have broader implications.

Our choice of comparing 1895–1924 with 1991–2020 could be questioned as arbitrary, but these peri-
odswere selected for sound scientific reasons. The baseline period represents the earliest erawith reliable
widespread measurements before extensive urbanisation, while the recent period captures maximum ur-
ban development. Using standard 30-year climatological periods ensures consistency with established
practices. Alternative period selections were tested and produced qualitatively similar results, confirm-
ing the robustness of our findings.

The focus on minimum temperatures alone may appear limiting, but this choice is justified by exten-
sive literature demonstrating that urban heat islands most strongly affect nighttime temperatures (Karl
et al., 1988; Landsberg, 1981). Maximum temperatures show weaker and more variable urban influences
due to increased daytime mixing and ventilation. By focusing on the temperature metric most sensitive
to urbanisation, we provide the clearest test of whether adjustments adequately address urban warming
biases.

4.4 The Adjustment Paradox and Its Implications

The U-shaped pattern of urban heat island intensity through the adjustment process—declining with
time-of-observation corrections then increasing with homogenisation—represents a critical finding that
demands careful interpretation. The initial 21.1% reduction in UHII from TOBs adjustments suggests
these corrections preferentially warm rural stations, possibly because rural observers were more likely to
maintain traditional afternoon observation times that introduce cooling biases when changed (Vose et al.,
2003).

The subsequent 38.8% increase inUHII during homogenisationmore than compensates for theTOBs
reduction, resulting in a net enhancement. This pattern likely reflects the pairwise homogenisation algo-
rithm’s tendency to spread signals from urbanising stations to their neighbours (Menne & Williams Jr,
2009). When a station experiences gradual warming due to urban growth, the algorithm may interpret
nearby stations as anomalously cool and adjust them upward, effectively spreading the urban signal rather
than removing it.

Importantly, this finding should not be interpreted as evidence of deliberate manipulation or conspir-
acy. Rather, it highlights the unintended consequences of statistical algorithms designed for one purpose
(removing step changes from station moves or equipment changes) when applied to gradual phenomena
like urbanisation. The enhancement of urban signals appears to be an emergent property of the adjust-
ment system rather than its intended function.

4.5 Dual Nature of Urban Heat Island Contamination

Our analysis reveals that urban heat island contamination in temperature records operates through two
distinct mechanisms: a persistent baseline temperature elevation and an accelerating differential warm-
ing trend. The absolute temperature analysis demonstrates that urban stations record minimum temper-
atures averaging 2.98°C warmer than their rural counterparts—a magnitude four times larger than the
differential warming trend of 0.725°C. This finding fundamentally alters our understanding of how urban
heat islands contaminate temperature records.

The existence of both a large baseline offset and an increasing trend means that temperature datasets
contain two layers of urban warming bias. First, the persistent 3°C elevation in urban stations means that
as station networks evolved and more urban locations were included, the calculated “global” tempera-
ture would show warming simply from changing station composition. Second, the additional 0.725°C
differential warming over our analysis period means this bias is not static but growing over time.

The implications are profound: if 22.7% of USHCN stations experience an average baseline UHI
effect of 2.98°C plus an additional trend-based warming of 0.725°C, the total urban contamination ap-



4 Discussion 10

proaches 3.7°C for affected stations. While spatial averaging reduces this impact on regional means, the
magnitude suggests that urban heat island effects may contribute more substantially to observed warm-
ing trends than previously recognised. The enhancement of these signals through NOAA’s adjustment
procedures, rather than their removal, means that both the baseline and trend components of UHI con-
tamination persist in the adjusted data used for climate assessments.

4.6 International Implications and Population Density Considerations

The United States, with a population density of only 36 people per km2 and 2.1% of stations classified as
urban core, represents a best-case scenario for minimising urban heat island contamination in tempera-
ture records. The implications become far more concerning when considering densely populated regions
where finding truly rural reference stations poses significant challenges.

Consider the contrasts in population density: the United Kingdom (275 people/km2), Germany (240
people/km2), Japan (347 people/km2), and theNetherlands (508 people/km2) have population densities
7–14 times higher than theUnited States. In such countries, the proportion of temperature stationswithin
urban heat island influence zones could reasonably be expected to reach 20–50%, compared to the 22.7%
we identified in the relatively sparse United States. Small, densely populated countries may have virtually
no stations free from urban influence.

If NOAA’s adjustments enhance rather than remove urban heat island signals in the United States,
and if similar adjustment procedures are applied to temperature records from more densely populated
regions, the global temperature record may contain substantially larger urban warming biases than previ-
ously recognised. A conservative extrapolation suggests that global land temperature trends could include
urban heat island contamination exceeding 1.0◦C in densely populated regions, with proportionally larger
impacts on calculated global averages.

The challenge is particularly acute for historically important temperature networks inWesternEurope
and East Asia, where long-term stations are predominantly located in or near population centres that
have experienced dramatic growth over the past century. The homogenisation procedures that enhance
urban signals by 9.4% in the United States may produce even larger amplifications in regions where rural
reference stations are scarce or non-existent.

4.7 Implications for Climate Science

The revelation that urban contamination includes both a 3°C baseline offset and a 0.725°C additional
warming trend has critical implications for climate policy. Temperature targets such as limiting warm-
ing to 1.5°C or 2°C above pre-industrial levels must be reconsidered in light of potential measurement
biases that could approach these magnitudes. If similar baseline UHI effects and warming trends affect
global temperature networks, a significant portion of observed warming may reflect urbanisation rather
than global climate change. This does not negate the reality of anthropogenic warming but suggests its
magnitude requires reassessment after accounting for both components of urban contamination.

These findings challenge the frequently stated assertion that urban heat island effects have been suc-
cessfully removed from temperature records and are properly accounted for in climate assessments (IPCC,
2021). The demonstration that adjustments enhance rather than remove urban warming signals in the
world’s most thoroughly studied temperature network raises fundamental questions about the accuracy
of global temperature trends.

For climatemodelling, the implications are substantial. If 22.7% ofU.S. stations contribute an artificial
warming of 0.725◦C, and if similar or larger contamination affects temperature records in more densely
populated regions, then the observational data used to validate climate models may contain systematic
warm biases. This would affect model calibration, historical attribution studies, and future projections.
Models tuned to match observations that include enhanced urban warming may overestimate climate
sensitivity or misattribute urban warming to other forcings.

The policy implications extend to international climate agreements and temperature targets. If global
temperature increases have been overestimated due to urban heat island contamination enhanced by ad-
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justment procedures, this affects the perceived urgency of mitigation efforts and the feasibility of limiting
warming to specific targets. This finding does not negate the reality of anthropogenic climate change but
suggests that its magnitude may need reassessment after accounting for systematic measurement biases.

4.8 Limitations and Caveats

Several limitations of this studymust be acknowledged. First, our analysis is confined to theUnited States
and specifically to the USHCN network. While we argue that findings from the U.S. likely represent a
conservative estimate of global issues, direct extrapolation requires caution. Different countries employ
different adjustment procedures, and the effectiveness of these methods may vary with station density
and data quality.

Second, our analysis examines aggregate patterns rather than station-by-station adjustments. While
this approach reveals systematic biases, it cannot identify the specific mechanisms causing homogenisa-
tion procedures to enhance urban signals. Individual stationsmay have legitimate reasons for large adjust-
ments that our aggregate analysis cannot evaluate. Future research should examine adjustment decisions
at the station level to understand why urban signals are amplified.

Third, we cannot definitively establish causation from our correlation analysis. The enhancement
of urban heat island signals through adjustment could result from various factors including algorithm de-
sign, reference station selection, or the interaction between urbanisation patterns and statistical detection
methods. Our study identifies the phenomenon but not its ultimate cause.

4.9 Recommendations for Future Research

This investigation highlights several critical areas requiring immediate research attention. Priority should
be given to analysing temperature networks in densely populated regions, particularly Western Europe
(United Kingdom, Germany, France, Belgium, Netherlands), East Asia ( Japan, South Korea, Taiwan),
and rapidly urbanising nations (China, India, Brazil). These analyses should employ country-specific
urban classification criteria that account for local population densities and urbanisation patterns.

A comprehensive global analysis of the GHCNdatabase is essential, examining how urban heat island
contamination varies with national population density, station network characteristics, and adjustment
procedures. This should include development of newmetrics for quantifying urban influence that account
for regional variations in city structure and growth patterns. Satellite-based temperature measurements
should be systematically compared with adjusted surface records to provide independent validation of
urban warming patterns.

Methodological research should focus on understanding why pairwise homogenisation amplifies ur-
ban signals and developing alternative approaches that preserve legitimate climate signals while removing
artefacts. This includes investigating whether different homogenisation algorithms (such as ACMANT,
HOMER, or RHtest) produce similar urban signal enhancement and exploring machine learning ap-
proaches that could better distinguish between urbanisation and climate change signals.

4.10 Broader Context and Conclusions

This investigation, while focused on the United States, likely reveals only the tip of a much larger global
issue. With just 2.1% of stations in urban cores and relatively low population density, the U.S. finding of
22.7% station contamination averaging 0.725◦C represents a probable lower bound for urban heat island
impacts on global temperature records. The enhancement rather than removal of these signals through
adjustment procedures raises fundamental questions about the accuracy of the global warming narrative—
not whether warming has occurred, but its true magnitude after accounting for systematic measurement
biases.

Our findings represent a constructive contribution to climate science by identifying a previously un-
recognised source of systematic error that, once corrected, will improve the accuracy of temperature
records and climate projections. Scientific integrity demands that we follow the evidence wherever it
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leads, acknowledge uncertainties and errors when discovered, and continuously refine our methods. The
enhancement of urban heat island signals through current adjustment procedures represents an opportu-
nity to improve thesemethods and achievemore accurate climate assessments, benefiting all stakeholders
in climate science and policy.

5 Conclusion

The dual nature of urban heat island contamination—combining a persistent 3°C baseline elevation with
an additional 0.725°C warming trend—suggests that the impact on temperature records is substantially
larger than indicated by trend analysis alone. This finding is particularly concerning given that our anal-
ysis of the United States, with its relatively low population density and only 2.1% of stations in urban
cores, likely represents a conservative estimate of global UHI contamination. In densely populated re-
gions where urban stations may comprise 30–50% of the network and baseline UHI effects could exceed
4–5°C, the cumulative impact on perceived global warming could be profound.

Based on these findings, we recommend several concrete actions. NOAA and other meteorological
agencies should prioritise reviewing their homogenisation algorithms, particularly examining why the
pairwise comparison method amplifies urban signals. Temperature dataset documentation should ex-
plicitly acknowledge the presence and magnitude of residual urban heat island effects, with uncertainty
bounds adjusted accordingly. Researchers using adjusted temperature data for climate studies should con-
duct sensitivity analyses comparing results across raw, TOBs-adjusted, and fully adjusted datasets. For
policy applications, temperature targets and warming assessments may require recalibration to account
for systematic warm biases in the observational record, particularly in densely populated regions.

Future research priorities emerge clearly from this investigation. Most urgently, similar analyses
should be conducted on temperature networks in densely populated countries, particularly the United
Kingdom, Germany, Japan, and rapidly urbanising nations like China and India. The development of
new homogenisation methodologies that preserve rather than amplify urban heat island signals while
removing other artefacts represents a critical technical challenge. Independent validation using satellite
temperaturemeasurements, radiosondes, and purpose-built reference networks like theU.S. Climate Ref-
erence Network should be expanded globally. Investigation into why current algorithms enhance urban
signals requires detailed station-by-station analysis and may benefit from machine learning approaches
that can better distinguish between urbanisation and climate signals.

These findings should not be misinterpreted as evidence of deliberate manipulation or as grounds for
dismissing climate change. Rather, they highlight the unintended consequences of statistical algorithms
designed primarily to detect and correct step changes being applied to gradual phenomena like urbanisa-
tion. The enhancement of urban heat island signals appears to result from the pairwise homogenisation
algorithm’s tendency to spread warming from urbanising stations to their rural neighbours—amathemat-
ical artefact rather than intentional bias. Recognising and correcting this issue represents an opportunity
to improve the accuracy of climate assessments, benefiting all stakeholders in climate science and policy.

Scientific progress depends on the willingness to identify and correct errors, refine methods, and fol-
low evidence regardless of its implications. This investigation demonstrates that even well-established,
widely-used procedures can produce unexpected results that compromise data quality. By identifying
the enhancement rather than removal of urban heat island signals in adjusted temperature data, we con-
tribute to the continuous improvement of climate science. More accurate temperature records serve
everyone’s interests—scientists seeking truth, policymakers requiring reliable information, and citizens
deserving transparency. As we face the challenges of a changing climate, ensuring the integrity of our
fundamental measurements becomes ever more critical. The path forward requires international collab-
oration, methodological innovation, and unwavering commitment to scientific accuracy.
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