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Abstract

Background: The integrity of temperature records depends critically on the effectiveness of adjust-
ment procedures designed to remove non-climatic influences. NOAA applies multiple adjustments
to the United States Historical Climatology Network (USHCN) data, progressing from rawmeasure-
ments through time-of-observation (TOB) corrections to fully adjusted (F52) datasets that include
homogenisation algorithms. The systematic impact of these adjustments on long-term temperature
trends remains inadequately quantified, with potential implications for climate change assessments
globally.

Objective: To investigate whether NOAA’s F52 adjustments introduce progressive warming bias
beyond legitimate time-of-observation corrections by quantifying temporal trends in adjustment mag-
nitudes across the USHCN network from 1895 to 2023.

Methods: We calculated per-station bias as the difference between F52 and TOB temperatures for
1,218 USHCN stations over 128 years. Linear regression quantified temporal trends in bias magni-
tude. Stations were stratified by urban/rural classification based on proximity to population centres.
Statistical significance was assessed usingMann-Kendall tests, with spatial autocorrelation evaluated
via Moran’s I statistic.

Results: Network-wide analysis revealed a statistically significant progressivewarming bias of 0.018°C
/decade (p < 0.001) in average temperatures, withmaximum temperatures showing 0.035°C /decade
and minimum temperatures 0.002°C /decade. Critically, urban and rural stations exhibited identical
bias trends for average temperature (both 0.019°C /decade, p = 0.95), despite rural stations having
no urban heat island effects requiring correction. This pattern affected 48.9% of stations for average
temperature (596 of 1,218), 54.6% for maximum temperature, and 41.1% for minimum temperature.

Conclusions: NOAA’s F52 adjustments systematically add warming to the temperature record be-
yond TOB corrections, with cumulative effects ranging from 0.03°C (minimum) to 0.45°C (maxi-
mum) since 1895. The identical bias patterns in urban and rural stations provide compelling evi-
dence that adjustments introduce artificial warming rather than correcting for environmental changes.
These findings have significant implications for temperature trend assessments and climate policy de-
cisions based on adjusted datasets.

Keywords: temperature adjustments, USHCN, progressive bias, homogenisation, climate data in-
tegrity

1 Introduction

The quantification of global temperature change relies fundamentally on the accuracy of instrumental
temperature records and the effectiveness of adjustment procedures designed to remove non-climatic
artefacts (Jones et al., 2012). These adjustments, ranging from simple time-of-observation corrections to
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complex statistical homogenisation algorithms, aim to produce temperature datasets that accurately re-
flect true climate signals while removing biases from stationmoves, equipment changes, and environmen-
tal modifications (Trewin, 2010). The integrity of these adjustment procedures is therefore paramount
to understanding the magnitude and rate of observed climate change.

The United States Historical Climatology Network (USHCN) provides one of the world’s longest
andmost thoroughly documented temperature records, with observations extending back to the 19th cen-
tury (Menne et al., 2009). NOAA applies a multi-stage adjustment process to these data, beginning with
time-of-observation (TOB) corrections that account for systematic biases introduced when observation
times change (Karl et al., 1986; Vose et al., 2003). The fully adjusted dataset (designated F52) incor-
porates additional corrections through the Pairwise Homogenisation Algorithm (PHA), which identifies
and adjusts for discontinuities in station records by comparison with neighbouring stations (Menne &
Williams Jr, 2009; Williams et al., 2012).

While these adjustment procedures are designed to improve data quality, concerns have been raised
about their potential to introduce systematic biases into the temperature record (Connolly et al., 2021;
McIntyre&McKitrick, 2007;Watts, 2009). Of particular concern is whether homogenisation algorithms
might introduce progressive warming trends that exceed the magnitude of the artefacts they purport to
remove. If adjustment procedures systematically add warming over time, this would have profound im-
plications for our understanding of observed temperature trends and the attribution of climate change.

Previous investigations have identified instances where adjustments appear to enhance rather than
reduce certain biases. Our companion study demonstrated that NOAA adjustments actually amplify ur-
ban heat island signals by 9.4% rather than removing them (Lyon, 2025). This unexpected finding raises
broader questions about whether adjustment procedures might introduce other systematic biases, partic-
ularly progressive warming trends that could contaminate long-term climate assessments.

The potential for adjustment procedures to introduce artificial trends is not merely theoretical. The
mathematical structure of pairwise homogenisation algorithms can, under certain conditions, propagate
local warming signals to neighbouring stations, potentially creating or amplifying trends (Steirou &Kout-
soyiannis, 2012). When a station experiences gradual warming—whether from urbanisation, land use
changes, or microclimatic factors—the algorithm may interpret nearby stations as anomalously cool and
adjust them upward, effectively spreading rather than removing the warming signal.

This investigation addresses a fundamental question: Do NOAA’s F52 adjustments introduce pro-
gressive warming bias beyond legitimate time-of-observation corrections? We employ a rigorous mathe-
matical framework to isolate non-TOB adjustments and quantify their temporal trends across the entire
USHCN network. By comparing bias patterns between urban and rural stations, we test whether ad-
justments respond to real environmental factors or introduce systematic artefacts. Our analysis spans
128 years (1895–2023) and encompasses all three primary temperature metrics (minimum, average, and
maximum), providing comprehensive assessment of adjustment impacts on the temperature record.

2 Methodology

We developed a comprehensive analytical framework to quantify progressive bias in NOAA tempera-
ture adjustments, employing rigorous statistical methods designed to withstand critical scrutiny. Our
approach isolated the specific impacts of non-TOBadjustments by comparing fully adjusted (F52) temper-
atures with time-of-observation adjusted (TOB) temperatures across the entire USHCN network. This
design choice deliberately focuses on the homogenisation and quality control procedures beyond the well-
understood TOB corrections, allowing us to assess whether these advanced adjustments introduce sys-
tematic temporal biases.

2.1 Mathematical Framework

For each station i at time t, we defined the adjustment bias as:
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B(i, t) = TF52(i, t)− TTOB(i, t) (1)

where TF52(i, t) represents the fully adjusted temperature and TTOB(i, t) represents the time-of-
observation adjusted temperature. This formulation isolates the adjustments applied during homogeni-
sation, including corrections for station moves, equipment changes, and environmental modifications.

Temporal trends in bias were quantified using ordinary least squares regression:

B(i, t) = β0(i) + β1(i)× t+ ϵ(i, t) (2)

where β1(i) represents the bias trend (°C/year) for station i, β0(i) is the intercept, and ϵ(i, t) is the
residual error. The network-wide bias trend was calculated as:

β̄1 =
1

N

N∑
i=1

β1(i) (3)

with standard error SE(β̄1) = σ(β1)/
√
N .

2.2 Data Processing and Quality Control

Temperature data were obtained from NOAA’s USHCN Version 2.5 database, comprising monthly ob-
servations for 1,218 stations. We implemented stringent quality control criteria to ensure robust trend
estimation:

1. Temporal coverage: Minimum 10 years of data required

2. Annual completeness: At least 6 months of data required per year

3. Trend reliability: Minimum 30 data points required for regression

4. Period consistency: Analysis restricted to 1895–2023 to avoid early network sparsity

Monthly bias values were calculated for all matched TOB and F52 records, then aggregated to an-
nual means requiring at least 6 months of data per year. This approach balanced data completeness with
temporal coverage, ensuring reliable trend estimates while maximising station inclusion.

2.3 Urban-Rural Classification

A critical component of our analysis involved stratifying stations by urban influence to test whether bias
patterns reflected real environmental factors or systematic artefacts. We developed a hierarchical classi-
fication system based on proximity to population centres:

• Urban: Stations within 100 km of cities with population>50,000

• Rural: Stations>100 km from any city with population>50,000

For trend analysis comparing urban and rural stations, we applied an additional temporal filter requir-
ing stations to have data beginning by 1905. This ensured consistent long-term coverage from our 1895
baseline, preventing bias from comparing stations with vastly different recording periods. This criterion
excluded 269 stations (22.1%) that began recording after 1905, resulting in 949 stations for urban-rural
comparison (668 urban, 281 rural).

2.4 Statistical Testing Framework

We employed multiple statistical approaches to ensure robust inference:
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2.4.1 Individual Station Significance

For each station, we tested the null hypothesis H0 : β1(i) = 0 against the alternative H1 : β1(i) ̸= 0
using t-tests with significance level α = 0.05.

2.4.2 Network-Wide Tests

TheMann-Kendall test assessed monotonic trends in network-wide mean bias:

S =

n−1∑
i=1

n∑
j=i+1

sgn(Bj −Bi) (4)

where sgn is the signum function. This non-parametric approach provided robustness against distri-
butional assumptions.

2.4.3 Spatial Autocorrelation

We tested for spatial clustering of bias trends using Moran’s I statistic:

I =
N

W
×

∑
i

∑
j wij(βi − β̄)(βj − β̄)∑

i(βi − β̄)2
(5)

where wij represents spatial weights based on inverse distance. This test evaluated whether nearby
stations exhibited similar bias trends, which might indicate regional adjustment patterns or algorithm
artefacts.

2.5 Regional Stratification

Stations were grouped into seven climate regions based onNOAA classifications to assess geographic pat-
terns in bias trends. Regional means and variances were compared using ANOVAwith post-hoc pairwise
comparisons to identify significant regional differences.

2.6 Temperature Metric Analysis

We analysed three temperature metrics separately:

1. Average temperature: Mean of daily maximum and minimum

2. Maximum temperature: Daily high temperature

3. Minimum temperature: Daily low temperature

This comprehensive approach allowed assessment of whether bias patterns varied by temperature
metric, potentially revealing different adjustment behaviours for different aspects of the diurnal temper-
ature cycle.

2.7 Validation and Sensitivity Analysis

Multiple validation approaches ensured robustness of findings:

• Bootstrap resampling: 1,000 iterations with replacement to quantify uncertainty

• Temporal stability: Analysis repeated for subperiods to test consistency

• Alternative trend methods: Comparison of linear trends with polynomial and spline fits

• Outlier sensitivity: Analysis repeated with and without extreme bias values
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All analyses were performed using Python 3.11 with numpy, pandas, scipy, and scikit-learn libraries.
Complete code and intermediate results were preserved to ensure reproducibility.

3 Results

3.1 Network-Wide Progressive Bias

Analysis of 1,218 USHCN stations over 128 years (1895–2023) revealed statistically significant progres-
sive warming bias in NOAA’s F52 adjustments across all temperature metrics. For average temperature,
the network-wide bias trend was 0.018 ± 0.002°C/decade (p < 0.001), indicating that F52 adjustments
systematically add warming beyond time-of-observation corrections at a rate of approximately 0.18°C per
century. This bias affected 596 stations (48.9%) showing statistically significant positive trends, while 344
stations (28.2%) showed significant negative trends, and 278 stations (22.8%) showed no significant trend.

Figure 1: Cross-metric comparison of progressive bias in NOAA F52 adjustments. Panel A shows
network-wide bias trends for minimum, average, and maximum temperatures with 95% confidence in-
tervals. Panel B displays the percentage of stations showing significant positive bias. Panel C illustrates
cumulative bias evolution from 1895 to 2023. PanelD presents the distribution of station-level bias trends,
demonstrating systematic shifts toward positive values across all temperature metrics.

Maximum temperature exhibited the strongest bias at 0.035°C/decade, affecting 665 stations (54.6%)
with significant positive trends. Minimum temperature showed the weakest but still detectable bias at
0.002°C/decade, with 501 stations (41.1%) displaying significant positive trends. The cumulative impact
of these biases since 1895 ranges from approximately 0.03°C for minimum temperature to 0.45°C for
maximum temperature (Figure 1).
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3.2 Urban-Rural Bias Patterns: The Critical Test

Themost compelling evidence for systematic bias emerged from comparing urban and rural stations. For
average temperature, urban stations (n=668) exhibited a mean bias trend of 0.019 ± 0.002°C/decade,
while rural stations (n=281) showed an identical trend of 0.019 ± 0.004°C/decade. The difference be-
tween urban and rural bias trends was -0.000°C/decade (p = 0.95, Cohen’s d = −0.005), indicating no
detectable difference despite fundamentally different environmental contexts.

Table 1: Urban versus rural bias trends across temperature metrics

Temperature Metric Urban Trend Rural Trend Difference p-value Cohen’s d
(°C/decade) (°C/decade) (°C/decade)

Maximum 0.028 ± 0.003 0.040 ± 0.006 -0.012 0.074 -0.197
Average 0.019 ± 0.002 0.019 ± 0.004 -0.000 0.950 -0.005
Minimum 0.011 ± 0.003 -0.001 ± 0.005 0.012 0.041 0.227

Maximum temperature revealed an even more striking pattern: rural stations showed higher bias
trends (0.040°C/decade) than urban stations (0.028°C/decade), though this difference was marginally
non-significant (p = 0.074). This counterintuitive result—rural stations receiving larger warming ad-
justments than urban stations—directly contradicts the expectation that adjustments should primarily
correct for urban heat island effects (Table 1).

Figure 2: Spatial distribution of bias trends for urban and rural stations. Red markers indicate stations
with significant positive bias trends, blue markers show significant negative trends, and grey markers rep-
resent non-significant trends. The map reveals no clear geographic pattern distinguishing urban from
rural bias trends, with both station types showing similar distributions of warming adjustments across the
continental United States.
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3.3 Regional Patterns and Spatial Analysis

Regional analysis revealed significant geographic variation in bias trends, with four of seven climate re-
gions showing statistically significant positive bias for average temperature. The Northeast region ex-
hibited the highest bias (0.028°C/decade, p < 0.001), followed by the Southeast (0.024°C/decade,
p < 0.001), Northwest (0.022°C/decade, p < 0.01), and Midwest (0.016°C/decade, p < 0.001). The
South, Southwest, and West regions showed positive but non-significant trends.

Despite regional variations, spatial autocorrelation analysis yielded Moran’s I = 0.029 (p = 0.303),
indicating no significant spatial clustering of bias trends. This absence of spatial correlation suggests that
bias patterns result from systematic application of adjustment algorithms rather than regional environ-
mental factors or coordinated policy changes (Figure 2).

3.4 Statistical Robustness

Multiple testing corrections using the Bonferroni method confirmed the robustness of our findings. For
average temperature, even with the conservative adjusted significance level of α = 4.1 × 10−5, a sub-
stantial proportion of stations maintained significant positive bias trends. Bootstrap resampling (1,000
iterations) yielded 95% confidence intervals that excluded zero for all network-wide bias estimates, further
supporting the reality of progressive warming bias.

The Mann-Kendall test for monotonic trends in network-wide mean bias yielded τ = 0.687 (p <
0.001) for average temperature, confirming a significant increasing trend in adjustment magnitude over
time. Breakpoint analysis using Pettitt’s test identified a significant change point around 1960 (p < 0.05),
suggesting intensification of bias in recent decades.

3.5 Temperature Metric Correlations

Cross-metric analysis revealed strong positive correlation between average and minimum temperature
bias trends (r = 0.739, p < 0.001) and moderate correlation between average and maximum temper-
atures (r = 0.607, p < 0.001). However, minimum and maximum temperature biases showed weak
correlation (r = −0.086, p = 0.003), suggesting different adjustment mechanisms or criteria for daily
temperature extremes.

3.6 Temporal Evolution of Bias

Time series analysis of network-wide mean bias revealed progressive increases across all temperature
metrics, with acceleration in recent decades. The rate of bias increase was not constant: pre-1960 bias
trends averaged 0.008°C/decade for average temperature, increasing to 0.024°C/decade post-1960. This
acceleration coincideswith the introduction of automated adjustment procedures and increased emphasis
on data homogenisation.

4 Discussion

4.1 Evidence for Systematic Progressive Bias

This investigation provides compelling evidence thatNOAA’s F52 adjustments introduce systematic pro-
gressive warming bias into the USHCN temperature record. The network-wide bias of 0.018°C/decade
for average temperature, affecting nearly half of all stations, represents a non-trivial contribution to ob-
served warming trends. More critically, the identical bias patterns observed in urban and rural stations—
particularly the precise equivalence for average temperature (both 0.019°C/decade)—cannot be recon-
ciled with adjustments that purportedly correct for real environmental changes.

The fundamental logic is straightforward: rural stations, by definition locatedmore than 100 km from
any substantial population centre, experience no urban heat island effects requiring correction. If F52
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Figure 3: Evolution of network-wide mean bias in F52 adjustments for average temperature from 1895
to 2023. The blue line shows annual mean bias with 95% confidence intervals (shaded area). The red
dashed line indicates the linear trend (0.018°C/decade), while the green line shows a smoothed trend
using LOWESS regression. The plot reveals progressive increases in adjustmentmagnitude, with notable
acceleration after 1960.

adjustments were responding to legitimate environmental factors, rural stations should exhibit markedly
different adjustment patterns than their urban counterparts. The observed equivalence provides strong
evidence that the adjustments introduce systematic artefacts rather than remove environmental biases.

4.2 TheMaximum Temperature Paradox

The finding that rural stations receive larger warming adjustments than urban stations for maximum tem-
perature (0.040 vs 0.028°C/decade) is particularly revealing. This pattern is antithetical to physical ex-
pectations, as urban areas typically exhibit enhanced daytimewarming due to reduced evapotranspiration,
increased heat absorption, and anthropogenic heat release (Arnfield, 2003; Oke, 1987). If adjustments
were correctly identifying and removing urban warming biases, urban stations should receive cooling ad-
justments relative to rural stations, not warming adjustments that are 30% smaller than those applied to
rural locations.

This paradox suggests that the homogenisation algorithmmay be misidentifying temperature signals.
When the algorithm detects differences between neighbouring stations, it appears to preferentially adjust
temperatures upward, regardless of whether the station is urban or rural. This behaviour could result
from asymmetric breakpoint detection, where warming breakpoints are more readily identified than cool-
ing breakpoints, or from the algorithm’s tendency to align station records with the warmest members of
comparison networks.

4.3 Implications for Global Temperature Records

The progressive bias identified in theUSHCNhas profound implications extending far beyond theUnited
States. The USHCN contributes significantly to global temperature datasets, including NOAA’s Global
Historical Climatology Network (GHCN), NASA’s GISTEMP, and the UK Met Office’s HadCRUT5
(Lenssen et al., 2019; Morice et al., 2021). If similar adjustment procedures are applied internationally—
and evidence suggests they are—then progressive warming bias may be embedded throughout global
temperature records.
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Consider the cumulative impact: maximum temperature adjustments add approximately 0.45°C of
warming since 1895, while average temperature adjustments contribute 0.23°C. These magnitudes are
substantial fractions of the total warming attributed to anthropogenic climate change. If similar biases
affect temperature records globally, a significant portion of observed warming may reflect adjustment
artefacts rather than climatic changes.

The implications becomemore severe when considering that many countries have higher station den-
sities in urban areas and less rigorous station documentation than the United States. In regions where
truly rural reference stations are scarce, the homogenisation process may propagate urban warming sig-
nals throughout entire networks, amplifying rather than removing urban biases.

4.4 Mechanisms of Bias Introduction

Several mechanisms could explain how homogenisation algorithms introduce progressive warming bias:

4.4.1 Asymmetric Breakpoint Detection

The Pairwise Homogenization Algorithm may be more sensitive to cooling breakpoints than warming
breakpoints. When a station shows relative cooling compared to its neighbours, the algorithm readily iden-
tifies this as anomalous and applies warming adjustments. However, gradual warming trends—whether
from urbanisation, land use changes, or other factors—may not trigger breakpoint detection, allowing
these trends to persist and propagate.

4.4.2 Reference Network Contamination

The algorithm’s effectiveness depends critically on the availability of pristine reference stations. In re-
gions experiencing widespread environmental changes, including urbanisation, agricultural intensifica-
tion, or land cover modifications, finding unaffected reference stations becomes increasingly difficult.
The algorithm may then adjust all stations toward a warming baseline that itself contains non-climatic
trends.

4.4.3 Temporal Inhomogeneity in Network Composition

As station networks evolved, the proportion of urban to rural stations changed. Early networks often em-
phasised rural agricultural stations, while modern networks include more suburban and urban locations.
Thehomogenisationprocess, attempting to create consistent long-term records,may inadvertently spread
recent urban warming backwards in time through adjustments.

4.5 Addressing Potential Criticisms

Several methodological aspects of our study warrant explicit defence against potential criticisms:

4.5.1 Choice of Baseline Period

Our analysis begins in 1895 rather than using the full USHCN record to avoid artefacts from early network
sparsity. Prior to 1890, station coverage was inadequate for continental-scale analysis, with some years
having fewer than 100 stations. The five-fold expansion in station count between 1890 and 1908 could
introduce sampling biases if included. By beginning our analysis when the network achieved reasonable
stability, we ensure that detected trends reflect adjustment procedures rather than network evolution.
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4.5.2 Urban Classification Criteria

Our classification of stations as urban (within 100 km of cities >50,000 population) or rural (>100 km
from such cities) is deliberately conservative. Many stations classified as ”rural” in our analysis are likely
influenced by smaller population centres or land use changes. This conservative approach strengthens
our findings—if anything, we underestimate the contrast between truly rural and urban stations.

4.5.3 Focus on Post-TOB Adjustments

By comparing F52 with TOB rather than raw data, we isolate the impacts of homogenisation and quality
control procedures. Time-of-observation adjustments are well-understood and generally accepted as nec-
essary corrections (Vose et al., 2003). Our focus on subsequent adjustments allows targeted assessment
of the more complex and potentially problematic homogenisation procedures.

4.6 Comparison with Previous Studies

Our findings align with and extend previous investigations questioning the effectiveness of temperature
adjustments. Steirou and Koutsoyiannis (2012) analysed global temperature networks and found that
adjustments typically increase warming trends. Connolly et al. (2021) demonstrated that homogenisation
procedures failed to remove urban biases from Chinese temperature records. Our study advances this
literature by providing the most comprehensive analysis to date of progressive bias in a single national
network, with rigorous statistical quantification and crucial urban-rural comparisons.

Notably, our results contradict studies claiming that adjustments successfully remove urban biases
(Hausfather et al., 2013, 2016). These studies typically compared adjusted trends between urban and
rural stations, finding similar warming rates. However, similar trends do not demonstrate bias removal if
both station types receive similar artificial warming adjustments, as our analysis reveals.

4.7 Implications for Climate Science and Policy

The presence of progressive warming bias in adjusted temperature records has far-reaching implications:

4.7.1 Temperature Target Reassessment

International climate agreements reference temperature targets (1.5°C, 2.0°C) based on instrumental
records. If these records contain systematic warm biases approaching 0.5°C from adjustments alone, the
actual warming may be substantially less than reported. This affects the perceived urgency of mitigation
efforts and the feasibility of achieving temperature targets.

4.7.2 Climate Model Validation

Climate models are calibrated and validated against observed temperature records. If observations con-
tain progressive warming bias, models may be tuned to match artificially enhanced trends. This could
lead to overestimation of climate sensitivity or misattribution of warming causes.

4.7.3 Attribution Studies

Studies attributing observed warming to specific causes assume that temperature records accurately re-
flect climatic changes. Progressive bias in adjustments complicates attribution by introducing artificial
warming that may be incorrectly attributed to greenhouse gas forcing or other factors.

4.8 Recommendations for Improvement

Based on our findings, we recommend several actions to address progressive bias in temperature adjust-
ments:
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4.8.1 Algorithm Transparency and Validation

Complete documentation of adjustment algorithms, including source code and decision criteria, should
be publicly available. Independent validation using synthetic data with known inhomogeneities would
test algorithm performance under controlled conditions.

4.8.2 Reference Network Development

Establishment of pristine reference networks, similar to the U.S. Climate Reference Network (Diamond
et al., 2013), in all countries would provide unimpeachable baselines for validating adjustments. These
networks should prioritise rural locations with minimal environmental change.

4.8.3 Alternative Adjustment Approaches

Development of adjustment methods that explicitly account for gradual environmental changes, includ-
ing urbanisation, rather than focusing solely on step changes. Machine learning approaches trained on
stations with documented histories could better distinguish between climatic and non-climatic trends.

4.8.4 Uncertainty Quantification

Temperature datasets should include comprehensive uncertainty estimates that account for adjustment
uncertainty. Users should have access to unadjusted, partially adjusted, and fully adjusted versions to
assess sensitivity to adjustment choices.

4.9 Limitations and Future Research

Several limitations of our study suggest directions for future research:
First, while we demonstrate progressive bias in adjustments, we cannot definitively separate inappro-

priate adjustments from responses to undocumented environmental changes. Station-by-station investi-
gation with detailed metadata analysis would provide deeper insights into adjustment decisions.

Second, our analysis is limited to the United States. Replication in other national networks, particu-
larly in densely populated regions, is essential to assess the global extent of progressive bias. Countries
with different adjustment procedures may show different bias patterns.

Third, we examine aggregate patterns rather than adjustment algorithms’ internal workings. Detailed
analysis of algorithm behaviour using synthetic data would illuminate mechanisms of bias introduction
and guide improvement efforts.

5 Conclusion

This comprehensive investigation of 1,218USHCN stations over 128 years provides compelling evidence
that NOAA’s F52 temperature adjustments introduce systematic progressive warming bias beyond legit-
imate time-of-observation corrections. The magnitude of this bias varies dramatically by temperature
metric: maximum temperatures show severe contamination (0.035°C/decade, 0.45°C cumulative since
1895), average temperatures exhibit moderate bias (0.018°C/decade, 0.23°C cumulative), and minimum
temperatures display minimal but detectable bias (0.002°C/decade, 0.03°C cumulative).

Themost compelling evidence emerges from the urban-rural comparison. The identical bias patterns
in urban and rural stations for average temperature (both 0.019°C/decade, p = 0.95) cannot be reconciled
with adjustments that purportedly correct for environmental differences. Rural stations, located more
than 100 km from population centres, have no urban heat island effects requiring correction. That these
stations receive identical warming adjustments to their urban counterparts provides strong evidence that
F52 procedures introduce systematic artefacts rather than remove environmental biases. The finding that
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rural stations receive even larger warming adjustments than urban stations for maximum temperature
further reinforces this conclusion.

These results have profound implications for climate science. If the world’s most thoroughly doc-
umented temperature network contains progressive warming bias approaching 0.5°C from adjustments
alone, and if similar procedures are applied globally, then a substantial fraction of observed warming may
reflect measurement artefacts rather than climatic changes. This does not negate the reality of anthro-
pogenic climate change but suggests its magnitude requires reassessment after accounting for systematic
biases in adjusted temperature records.

The path forward requires immediate action on multiple fronts. NOAA and other meteorological
agencies should prioritise reviewing their adjustment algorithms, with particular focus on why homogeni-
sation procedures amplify rather than remove temperature trends. Complete algorithm transparency,
including source code and decision criteria, would enable independent validation and improvement. De-
velopment of pristine reference networks globally would provide unimpeachable baselines for testing ad-
justment effectiveness. Temperature datasets should include comprehensive uncertainty bounds that
explicitly account for adjustment uncertainty, allowing users to assess the sensitivity of conclusions to
adjustment choices.

Future research priorities are clear. This analysis should be replicated in other national tempera-
ture networks, particularly in densely populated regions where urban-rural contrasts may be even more
pronounced. Detailed station-by-station investigation with comprehensive metadata analysis would illu-
minate specific mechanisms of bias introduction. Development of new adjustment methodologies that
can distinguish between gradual environmental changes and genuine climate signals represents a critical
technical challenge. Machine learning approaches, trained on stations with documented histories, may
offer solutions that current statistical methods cannot provide.

Our findings should not be misinterpreted as evidence against climate change or as suggestion of
deliberate manipulation. Rather, they reveal unintended consequences of statistical procedures designed
for one purpose—removing step changes—when applied to gradual phenomena like urbanisation or land
use change. The progressive warming bias appears to be an emergent property of current adjustment
systems rather than anyone’s intention. Recognising and correcting this bias represents an opportunity
to improve the accuracy of climate assessments, benefiting all who depend on reliable temperature data.

Scientific integrity demands that we follow evidence wherever it leads, acknowledge uncertainties,
and continuously refine our methods. By demonstrating that current adjustment procedures introduce
rather than remove systematic biases, we contribute to the essential process of improving climate data
quality. The magnitude of identified biases—ranging from 0.03°C to 0.45°C depending on temperature
metric—represents a significant fraction of observed warming and cannot be ignored in honest climate
assessment. As we confront the challenges of a changing climate, ensuring the accuracy of our funda-
mental measurements becomes ever more critical. Only through rigorous, transparent, and continuous
improvement of our observational systems can we build the reliable scientific foundation necessary for
informed decision-making.
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results, and reproduction instructions are available at https://github.com/rjl-climate/ushcn-heatisland.
The progressive bias investigation framework, including all statistical analyses and visualisations, is pre-
served in the analysis/progressive_bias_investigation directory.
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